Powered By Blogger

invitacion a todos a mi blog¡¡¡¡

bienvenidos a mi blog espero y les agrade y sea un espacio para la interaccion de opiniones¡¡¡

domingo, 15 de febrero de 2009

unidad 1 ensayo

UNIDAD 1

Introducción a las tecnologías LAN

1.1-introduccion a las tecnologías LAN

Una red de área local, red local o mejor conocida como LAN (del inglés Local Area Network) es la interconexión de varios ordenadores y periféricos. Esta limitada físicamente hasta los 200 metros. Su aplicación más popular es la interconexión de ordenadores personales y estaciones de trabajo en oficinas, fábricas, etc., para compartir recursos e intercambiar datos y aplicaciones. En definitiva, permite que dos o más máquinas se comuniquen.

El término red local incluye tanto el hardware como el software necesario para la interconexión de los distintos dispositivos y el tratamiento de la información.Las primeras LAN fueron creadas a finales de los años 1970 y se solían crear líneas de alta velocidad para conectar grandes ordenadores centrales a un solo lugar. Muchos de los sistemas fiables creados en esta época, como Ethernet y ARCNET, fueron los más populares.

En una empresa suelen existir muchos ordenadores, los cuales necesitan de su propia impresora para imprimir informes, los datos almacenados en uno de los equipos es muy probable que sean necesarios en otro de los equipos de la empresa, por lo que será necesario copiarlos en este, pudiéndose producir desfases entre los datos de dos usuarios, la ocupación de los recursos de almacenamiento en disco se multiplican, los ordenadores que trabajen con los mismos datos tendrán que tener los mismos programas para manejar dichos datos, entre varias otras complicaciones etc.

La solución a estos problemas se llama red de área local, esta permite compartir bases de datos, programas y periféricos como puede ser un módem, una tarjeta RDSI, una impresora, etc. ; poniendo a nuestra disposición otros medios de comunicación como pueden ser el correo electrónico y el Chat. Nos permite además realizar tareas que se pueden repartir en distintos nodos y nos permite la integración de los procesos y datos de cada uno de los usuarios en un sistema de trabajo corporativo. Tener la posibilidad de centralizar información o procedimientos facilita la administración y la gestión de los equipos.

Además una red de área local conlleva un importante ahorro, tanto de tiempo, ya que se logra gestión de la información y del trabajo, como de dinero, ya que no es preciso comprar muchos periféricos, se consume menos papel, y en una conexión a Internet se puede utilizar una única conexión telefónica o de banda ancha compartida por varios ordenadores conectados en red.

Características importantes:

Tecnología broadcast (difusión) con el medio de transmisión compartido.
Cableado específico instalado normalmente a propósito.
Capacidad de transmisión comprendida entre 1 Mbps y 1 Gbps.
Extensión máxima no superior a 3 km (una
FDDI puede llegar a 200 km)
Uso de un medio de comunicación privado
La simplicidad del medio de transmisión que utiliza (
cable coaxial, cables telefónicos y fibra óptica)
La facilidad con que se pueden efectuar cambios en el
hardware y el software
Gran variedad y número de dispositivos conectados
Posibilidad de conexión con otras redes
limitante de 100
m

1.2- Topologías

La topología de red define la estructura de una red. Es la disposición real de los cables o medios. La otra parte es la topología lógica, que define la forma en que los hosts acceden a los medios para enviar datos. Las topologías más comúnmente usadas son las siguientes:

Topologías físicas

Una topología de bus circular usa un solo cable backbone que debe terminarse en ambos extremos. Todos los hosts se conectan directamente a este backbone.

La topología de anillo conecta un host con el siguiente y al último host con el primero. Esto crea un anillo físico de cable.

La topología en estrella conecta todos los cables con un punto central de concentración.
Una topología en estrella extendida conecta estrellas individuales entre sí mediante la conexión de HUBs o
switches. Esta topología puede extender el alcance y la cobertura de la red.
Una topología jerárquica es similar a una estrella extendida. Pero en lugar de conectar los HUBs o
switches entre sí, el sistema se conecta con un computador que controla el tráfico de la topología.

La topología de malla se implementa para proporcionar la mayor protección posible para evitar una interrupción del servicio. El uso de una topología de malla en los sistemas de control en red de una planta nuclear sería un ejemplo excelente. Como se puede observar en el gráfico, cada host tiene sus propias conexiones con los demás hosts. Aunque Internet cuenta con múltiples rutas hacia cualquier ubicación, no adopta la topología de malla completa.

También hay otra topología denominada árbol.

Topologías lógicas

La topología lógica de una red es la forma en que los hosts se comunican a través del medio. Los dos tipos más comunes de topologías lógicas son broadcast y transmisión de tokens.
La topología broadcast simplemente significa que cada host envía sus datos hacia todos los demás hosts del medio de red. No existe una orden que las estaciones deban seguir para utilizar la red. Es por orden de llegada, es como funciona
Ethernet.

La topología transmisión de tokens controla el acceso a la red mediante la transmisión de un token electrónico a cada host de forma secuencial. Cuando un host recibe el token, ese host puede enviar datos a través de la red. Si el host no tiene ningún dato para enviar, transmite el token al siguiente host y el proceso se vuelve a repetir. Dos ejemplos de redes que utilizan la transmisión de tokens son Token Ring y la Interfaz de datos distribuida por fibra (FDDI). Arcnet es una variación de Token Ring y FDDI. Arcnet es la transmisión de tokens en una topología de bus.


1.3- Control de acceso al medio

El control de acceso al medio en informática y telecomunicaciones, es el conjunto de mecanismos y protocolos por los que varios dispositivos en una red, como ordenadores, teléfonos móviles, etc. se ponen de acuerdo para compartir un medio de transmisión común por lo general, un cable eléctrico u óptico, o en comunicaciones inalámbricas el rango de frecuencias asignado a su sistema.

Uno de los problemas a resolver en un sistema de comunicaciones es cómo repartir entre varios usuarios el uso de un único canal de comunicación o medio de transmisión, para que puedan gestionarse varias comunicaciones al mismo tiempo. Sin un método de organización, aparecerían interferencias que podrían bien resultar molestas, o bien directamente impedir la comunicación. Este concepto se denomina control de acceso al medio.

Una ejemplo para entender el problema del acceso múltiple sería una habitación (que representaría el canal) en la que varias personas desean hablar al mismo tiempo. Si varias personas hablan a la vez, se producirán interferencias y se hará difícil la comprensión. Para evitar o reducir el problema, podrían hablar por turnos (estrategia de división por tiempo), hablar unos en tonos más agudos y otros más graves (división por frecuencia), dirigir sus voces en distintas direcciones de la habitación (división espacial) o hablar en idiomas distintos (división por código, como en CDMA); sólo las personas que conocen el código (es decir, el "idioma") pueden entenderlo.

Más específicamente, en redes informáticas, las siglas inglesas MAC (de Medium Access Control, la traducción inglesa del término) se emplean en la familia de estándares IEEE 802 para definir la subcapa de control de acceso al medio.

La subcapa MAC se sitúa en la parte inferior de la capa de enlace de datos (Capa 2 del Modelo de Referencia OSI). La implementación exacta de esta subcapa puede variar dependiendo de los requerimientos de la capa física (por ejemplo Ethernet, Token Ring, WLAN).
Algunas de las funciones de la subcapa MAC incluyen:
Controlar el acceso al medio físico de transmisión por parte de los dispositivos que comparten el mismo canal de comunicación.
Agregar la dirección MAC del nodo fuente y del nodo destino en cada una de las tramas que se transmiten.

Al transmitir en origen debe delimitar las tramas agregando bits de bandera (flags) para que el receptor pueda reconocer el inicio y fin de cada trama.
Al recibir en destino debe determinar el inicio y el final de una trama de datos dentro de una cadena de bits recibidos por la
capa física.
Efectuar detección y, si procede,
corrección de errores de transmisión.
Descartar tramas duplicadas o erróneas.


1.4- Representación de una dirección IP

Una dirección IP es un número que identifica de manera lógica y jerárquica a una computadora dentro de una red que utilice el protocolo IP (Internet Protocol), que corresponde al nivel de red o nivel 3 del modelo de referencia OSI. Dicho número no se ha de confundir con la dirección MAC que es un número hexadecimal fijo que es asignado a la tarjeta o dispositivo de red por el fabricante, mientras que la dirección IP se puede cambiar.

Es habitual que un usuario que se conecta desde su hogar a Internet utilice una dirección IP. Esta dirección puede cambiar cada vez que se conecta; y a esta forma de asignación de dirección IP se denomina una dirección IP dinámica (normalmente se abrevia como IP dinámica).
Los sitios de Internet que por su naturaleza necesitan estar permanentemente conectados, generalmente tienen una dirección IP fija (se aplica la misma reducción por IP fija o IP estática), es decir, no cambia con el tiempo. Los servidores de correo, DNS, FTP públicos, y servidores de páginas web necesariamente deben contar con una dirección IP fija o estática, ya que de esta forma se permite su localización en la red.

A través de Internet, los ordenadores se conectan entre sí mediante sus respectivas direcciones IP. Sin embargo, a los seres humanos nos es más cómodo utilizar otra notación más fácil de recordar y utilizar, como los nombres de dominio; la traducción entre unos y otros se resuelve mediante los servidores de nombres de dominio DNS.
Existe un protocolo para asignar direcciones IP dinámicas llamado
DHCP (Dynamic Host Configuration Protocol).

una dirección IP se implementa con un número de 32 bits que suele ser mostrado en cuatro grupos de números decimales de 8 bits (IPv4). Cada uno de esos números se mueve en un rango de 0 a 255 (expresado en decimal), o de 0 a FF(en hexadecimal) o de 0 a 11111111 (en binario). Las direcciones IP se pueden expresar como números de notación decimal: se dividen los 32 bits de la dirección en cuatro octetos. El valor decimal de cada octeto puede ser entre 0 y 255 (el número binario de 8 bits más alto es 11111111 y esos bits, de derecha a izquierda, tienen valores decimales de 1, 2, 4, 8, 16, 32, 64 y 128, lo que suma 255 en total).
Ejemplo de representación de dirección IPv4: 164.12.123.65

Hay tres clases de direcciones IP que una organización puede recibir de parte de la Internet Corporation for Assigned Names and Numbers (ICANN): clase A, clase B y clase C. En la actualidad, ICANN reserva las direcciones de clase A para los gobiernos de todo el mundo y las direcciones de clase B para las medianas empresas. Se otorgan direcciones de clase C para todos los demás solicitantes. Cada clase de red permite una cantidad fija de equipos (hosts).

En una red de clase A, se asigna el primer octeto para identificar la red, reservando los tres últimos octetos (24 bits) para que sean asignados a los hosts, de modo que la cantidad máxima de hosts es 224 - 2 (las direcciones reservadas de broadcast [últimos octetos a 255] y de red [últimos octetos a 0]), es decir, 16 777 214 hosts.

En una red de clase B, se asignan los dos primeros octetos para identificar la red, reservando los dos octetos finales (16 bits) para que sean asignados a los hosts, de modo que la cantidad máxima de hosts es 216 - 2, o 65 534 hosts.

En una red de clase C, se asignan los tres primeros octetos para identificar la red, reservando el octeto final (8 bits) para que sea asignado a los hosts, de modo que la cantidad máxima de hosts es 28 - 2, ó 254 hosts.
La dirección 0.0.0.0 es utilizada por las máquinas cuando están arrancando o no se les ha asignado dirección.

La dirección que tiene su parte de host a cero sirve para definir la red en la que se ubica. Se denomina dirección de red.

La dirección que tiene su parte de host a unos sirve para comunicar con todos los hosts de la red en la que se ubica. Se denomina dirección de broadcast.
Las direcciones 127.x.x.x se reservan para pruebas de retroalimentación. Se denomina dirección de bucle local o loopback.

Hay ciertas direcciones en cada clase de dirección IP que no están asignadas y que se denominan direcciones privadas. Las direcciones privadas pueden ser utilizadas por los hosts que usan traducción de dirección de red (NAT) para conectarse a una red pública o por los hosts que no se conectan a Internet. En una misma red no puede existir dos direcciones iguales, pero sí se pueden repetir en dos redes privadas que no tengan conexión entre sí o que se sea a través de NAT. Las direcciones privadas son:

Clase A: 10.0.0.0 a 10.255.255.255 (8 bits red, 24 bits hosts)
Clase B: 172.16.0.0 a 172.31.255.255 (16 bits red, 16 bits hosts)
Clase C: 192.168.0.0 a 192.168.255.255 (24 bits red, 8 bits hosts)

Muchas aplicaciones requieren conectividad dentro de una sola red, y no necesitan conectividad externa. En las redes de gran tamaño a menudo se usa TCP/IP. Por ejemplo, los bancos pueden utilizar TCP/IP para conectar los cajeros automáticos que no se conectan a la red pública, de manera que las direcciones privadas son ideales para ellas. Las direcciones privadas también se pueden utilizar en una red en la que no hay suficientes direcciones públicas disponibles.

Las direcciones privadas se pueden utilizar junto con un servidor de traducción de direcciones de red (NAT) para suministrar conectividad a todos los hosts de una red que tiene relativamente pocas direcciones públicas disponibles. Según lo acordado, cualquier tráfico que posea una dirección destino dentro de uno de los intervalos de direcciones privadas no se enrutará a través de Internet.

Una dirección IP dinámica es una IP asignada mediante un servidor DHCP (Dynamic Host Configuration Protocol) al usuario. La IP que se obtiene tiene una duración máxima determinada. El servidor DHCP provee parámetros de configuración específicos para cada cliente que desee participar en la red IP. Entre estos parámetros se encuentra la dirección IP del cliente.
DHCP apareció como protocolo estándar en octubre de
1993. El estándar RFC 2131 especifica la última definición de DHCP (marzo de 1997). DHCP sustituye al protocolo BOOTP, que es más antiguo. Debido a la compatibilidad retroactiva de DHCP, muy pocas redes continúan usando BOOTP puro.

Las IPs dinámicas son las que actualmente ofrecen la mayoría de operadores. Éstas suelen cambiar cada vez que el usuario reconecta por cualquier causa.

Ventajas
Reduce los costos de operación a los proveedores de servicios internet (
ISP).
Reduce la cantidad de IP´s asignadas (de forma fija) inactivas.

Desventajas
Obliga a depender de servicios que redirigen un
host a una IP.
Es ilocalizable; en unas horas puede haber varios cambios de IP.

Asignación de direcciones IP

Dependiendo de la implementación concreta, el servidor DHCP tiene tres métodos para asignar las direcciones IP:

manualmente, cuando el servidor tiene a su disposición una tabla que empareja direcciones MAC con direcciones IP, creada manualmente por el administrador de la red. Sólo clientes con una dirección MAC válida recibirán una dirección IP del servidor.

automáticamente, donde el servidor DHCP asigna permanentemente una dirección IP libre, tomada de un rango prefijado por el administrador, a cualquier cliente que solicite una.
dinámicamente, el único método que permite la reutilización de direcciones IP. El administrador de la red asigna un rango de direcciones IP para el DHCP y cada ordenador cliente de la
LAN tiene su software de comunicación TCP/IP configurado para solicitar una dirección IP del servidor DHCP cuando su tarjeta de interfaz de red se inicie. El proceso es transparente para el usuario y tiene un periodo de validez limitado.

IP fija
Una dirección IP fija es una IP asignada por el usuario de manera manual. Mucha gente confunde IP Fija con IP Publica e IP Dinamica con IP Privada.

Una IP puede ser Privada ya sea dinamica o fija como puede ser IP Publica Dinamica o Fija.
Una IP Publica se utiliza generalmente para montar servidores en internet y necesariamente se desea que la IP no cambie por eso siempre la IP Publica se la configura de manera Fija y no Dinamica, aunque si se podria.

En el caso de la IP Privada generalmente es dinamica asignada por un servidor DHCP, pero en algunos casos se configura IP Privada Fija para poder controlar el acceso a internet o a la red local, otorgando ciertos privilegios dependiendo del numero de IP que tenemos, si esta cambiara (fuera dinamica) seria mas complicado controlar estos privilegios (pero no imposible).

Las IPs Publicas fijas actualmente en el mercado de acceso a Internet tienen un coste adicional mensual. Estas IPs son asignadas por el usuario después de haber recibido la información del proveedor o bien asignadas por el proveedor en el momento de la primera conexión.
Esto permite al usuario montar servidores web, correo, FTP, etc. y dirigir un nombre de dominio a esta IP sin tener que mantener actualizado el servidor DNS cada vez que cambie la IP como ocurre con las IP Publica dinámica.

Ventajas
Permite tener servicios dirigidos directamente a la IP.

Desventajas
Son más vulnerables al ataque, puesto que el usuario no puede conseguir otra IP.
Es más caro para los ISP puesto que esa IP puede no estar usándose las 24 horas del día.

No hay comentarios:

Publicar un comentario